quadratic function - definitie. Wat is quadratic function
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is quadratic function - definitie


Quadratic function         
FUNCTION DEFINED BY A POLYNOMIAL OF DEGREE TWO
Quadratic polynomial; Quadratic functions; Second degree polynomial; Quadratic trinomial; Second-degree polynomial; Second-order polynomial; Second order polynomial; Y=ax^2+bx+c; Y=ax2+bx+c; Quadratic expression; Quadratic math; Single-variable quadratic function
In algebra, a quadratic function, a quadratic polynomial, a polynomial of degree 2, or simply a quadratic, is a polynomial function with one or more variables in which the highest-degree term is of the second degree.
Rational quadratic covariance function         
In statistics, the rational quadratic covariance function is used in spatial statistics, geostatistics, machine learning, image analysis, and other fields where multivariate statistical analysis is conducted on metric spaces. It is commonly used to define the statistical covariance between measurements made at two points that are d units distant from each other.
Quadratic irrational number         
MATHEMATICAL CONCEPT
Quadratic surd; Quadratic irrationality; Quadratic Irrational Number; Quadratic irrationalities; Quadratic irrational; Quadratic irrational numbers
In mathematics, a quadratic irrational number (also known as a quadratic irrational, a quadratic irrationality or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers.Jörn Steuding, Diophantine Analysis, (2005), Chapman & Hall, p.